RENAL ARTERIAL DISEASE

Karl A. Illig, MD
Professor of Surgery
Director, Division of Vascular Surgery

INTRODUCTION

• Renin discovered in 1899, and Goldblatt defined relevant physiology in the 1930s.
• First successful treatment of renovascular hypertension occurred in 1938! (nephrectomy).
• First endarterectomy in 1954
• First pessimism by 1960!!! (“less than half of treated patients actually improve.”)
• In 2000, there were 21,600 renal revascularization procedures performed (Medicare only).

PATHOPHYSIOLOGY

• Physiology:
 • Obstruction to blood flow reduces perfusion and lowers intrarenal pressure
 • Perfusion:
 • Ischemic nephropathy – local hypertension more important than ischemia, per se
 • Pressure:
 • Release of renin, conversion of angiotensinogen to angiotensin I (and hence II by ACE) causing renovascular hypertension

DISCLOSURE

• I have no relationships to disclose.
• Endovascular intervention for renal and mesenteric disease is off-label and should be considered experimental.
PATHOPHYSIOLOGY

- Unilateral disease (Goldblatt “1 clip, 2 kidney”):
 - RENIN-DRIVEN. Continued renin release from bad kidney, but good kidney can excrete excess volume (renin inhibitors).
- Bilateral disease (Goldblatt “2 clips, 2 kidney”):
 - VOLUME-DRIVEN: Neither kidney can excrete excess volume; body settles down to a volume-overloaded homeostatic state (diuretics).

ETIOLOGY

- Atherosclerosis (“overflow” of aortic disease) (80%)
- Fibromuscular dysplasia (14%)
- Aneurysms
- Dissection and trauma (1%)
- Pediatric hypoplastic syndromes (3%)

PRESENTATION

- Hypertension
 - Young onset, sudden onset or worsening
 - Hypertensive crisis with flash pulmonary edema
 - Abdominal/flank bruit
 - Atherosclerotic risk factors
- Acute renal insufficiency after starting ACE/ARB
 - Loss of efferent vasoconstriction (compensation to maintain filtration pressure)
 - Incidental findings (aneurysm, FMD)
 - Trauma and dissection obvious

PRESENTATION - IMAGING

- Duplex
 - With skill, direction-independent
 - Classic criterion for greater than 60% stenosis – ratio of PSV in renal artery to aorta of >3.5
 - PSV >200cm/sec is abnormal, especially with poststenotic turbulence

PRESENTATION - IMAGING

- Resistive index: In theory a way to measure the intrinsic resistance of the renal parenchymal vessels – is this kidney likely to respond to elimination of the stenosis?

 \[
 \text{PSV} - \text{EDV} \quad \text{Values less than 0.7 to 0.8 suggest higher chance of improvement after revascularization.}
 \]

- Unfortunately, much better in theory than fact.
PRESENTATION - IMAGING

- CT or MR angiography excellent, however, for this very reason – rotatable
- However, contrast issues are significant in this patient population
 - GFR better than Cr

PRESENTATION – FXn?

- Kidney length
- Pressure gradients
- Split function studies – relative function only
- Renal vein renin studies
 - Not terribly useful
TREATMENT

WHOM TO TREAT???

- Very unclear, especially today (2011).
- Classically: severe lesion with clear renovascular hypertension, bilateral lesions with ischemic nephropathy, pediatric patients.
- Hypertension: Unilateral or bilateral
- Ischemia: Theoretically must be bilateral, but hypertension itself causes nephropathy, so theoretically unilateral lesions can do it... but in this case it's probably beyond being responsive to revascularization.

INTRODUCTION
PATHOPHYSIOLOGY
PRESENTATION
TREATMENT
RESULTS
CONCLUSIONS

STAR (2003) and ASTRAL (2009) found no differences between medical treatment and stenting, but significant problems exist:
- ASTRAL
 - Mild lesions only (<70%, minimally symptomatic, physicians “weren’t sure whether intervention would help)
 - Inexperienced interventionalists (some performed 2 or fewer renal interventions yearly), high (10%) complication rate

ASTRAL, at least, did not include the population of patients (severe disease) that we are dealing with here – results only applicable to patients with very mild lesions (whom few of us would treat anyway).

CORAL – more severe lesions, ongoing, expect results in 2014

TREATMENT

WHOM TO TREAT???

- No evidence in support of treating incidentally-found lesions!

INTRODUCTION
PATHOPHYSIOLOGY
PRESENTATION
TREATMENT
RESULTS
CONCLUSIONS

General algorithm:
- Define anatomy and etiology
 - FMD/pediatric – early intervention
 - Severe hypertension not medically controllable, clear ischemic nephropathy, and those with “flash pulmonary edema” – early intervention
- All others, including incidentally found lesions (90%):
 - Medical treatment of BP
 - Atherosclerotic risk management
 - Close observation
TREATMENT

- Atherosclerotic stenosis
 - Endovascular is a good option – high success with low morbidity (but higher recurrence rates than surgery)
 - Lesion is usually “spillover” from aorta – hence
 - Primary stenting by most
 - Stent must protrude slightly into aortic lumen
 - Surgery (bypass or endarterectomy) works well in experienced hands – higher short-term risk but better long-term success rates.
TREATMENT

- FMD
 - Balloon angioplasty works well
- Dissection
 - Treat the primary problem, usually perfusion will “remodel”
 - Direct reconstruction/bypass
- Trauma
 - In theory, you have 30 minutes
 - Salvage is possible longer than this, but not if hours have elapsed

RESULTS

- Surgery (Wake Forest)
 - 720 reconstructions (10 years)
 - Mortality 1 to 3% (concomitant aortic surgery)
 - Morbidity 15 to 20%
 - Hypertension response: 85%
 - Function improvement: 70% off dialysis
 - Recurrence 4% (10% contralateral, unoperated upon arteries)
RESULTS

• Endovascular (meta analysis)
 • Approximately 2,000 patients (37 studies)
 • Mortality 0 to 3% (most zero)
 • Morbidity 0 to 43% (most access related)
 • Technical success >95%
 • Hypertension response: 60 to 80%
 • Function improvement: 25% off dialysis
 • Recurrence 5 to 66%

CONCLUSIONS

• TREAT:
 • Severe hypertension (uncontrolled by medical management or associated with cardiopulmonary compromise) in patients with severe renal artery stenosis
 • True ischemic nephropathy (so identified in collaboration with nephrology/cardiology)
 • Pediatric patients, those with FMD

• DO NOT TREAT:
 • Incidentally-found lesions (EVAR!)
 • Mild stenoses
 • Stenoses in patients with easily controllable hypertension

CONCLUSIONS

• Recent studies discourage intervention, but they did not include the categories of patients usually considered for intervention by most thoughtful physicians – ASTRAL does not apply to patients with severe lesions and severe sequelae.

• Endovascular intervention is associated with less short-term risk but has higher recurrence rates.
 • Surgical bypass is more dangerous in the short term, but has the best long-term outcomes.
CONCLUSIONS
• If discovered incidentally:
 • Repair all in pregnant or premenopausal women
 • Probably repair all that are 2.0 cm or enlarging
 • Define anatomy, talk to your colleagues – method of repair is individualized and especially if ruptured, have a low threshold for nephrectomy, splenectomy, and/or simple ligation.