Preoperative Evaluation for Hemodialysis access

Marc H. Glickman
Eastern Virginia Medical School
Sentara Vascular Specialists
Norfolk, Virginia

Disclosure

- I have no financial relationships to disclose.
- I have no unlabeled or unapproved uses of drugs or devices in my presentation

Overview

- Introduction
- History
- Physical Examination
- Ultrasonography
- Vessel Selection

INTRODUCTION

Introduction

- There are over 355,000 patients on hemodialysis in the US
- Arteriovenous (AV)fistulae have a high failure rate approximately 0.2 events per year and low maturation rate
- AV grafts have a failure rate of 0.8-1 events per year.
- It is essential that we appropriately evaluate the patient prior to access creation to reduce failure rates

HISTORY
History

• Past Medical History:
 – Diabetes mellitus
 – Peripheral arterial disease
 – Coronary artery Disease
 – Severe congestive heart failure
 – Advanced age
 – Female gender
 – Hypercoagulable states (repeat thrombotic events)
 – BMI

 (All associated with difficulty establishing a functional AV access)

• Past Procedural and Surgical History:
 – Indwelling central lines
 – Prior central lines/ PICC lines
 – Pacemakers/defibrillators
 – All prior access procedures
 – Vascular trauma
 – Cardiac surgery
 – Previous non-access surgery to the extremity

 (increased risk of central venous stenosis)

• Miscellaneous considerations:
 – Dominant arm
 – Immobility of extremity (previous stroke)
 – Recurrent infections
 – Immunosuppression
 – Overall medical condition
 – Social support system
 – Skin integrity

Preoperative Evaluation for Hemodialysis access

PHYSICAL EXAMINATION

Physical Exam

• General considerations:
 – Forearm eczema
 – Extensive solar keratosis
 – Thin skin
 – Motor or Sensory neuropathy
 – Sites of previous IV/PICC line access

• Assessment of Distal arterial pulses –
 – Brachial, radial and ulnar arteries should all be checked for compressibility and equality bilaterally
 – The Allen’s test confirms a patent palmar arch
 – Bilateral extremity blood pressures should be recorded and found to be equal
 – Note recent arterial puncture
Physical Exam

• Assessment of the Venous System
 – Evaluate for the presence, diameter and course of superficial forearm and arm veins
 – The superficial venous system should be examined with and without a tourniquet in place
 – Focus on distensibility and interruptions.
 – Prominent chest wall venous collaterals and edema are signs of central venous stenosis
 – Arm diameter in obese patients may be a factor

Ultrasonography

• It is utilized to evaluate:
 – arterial inflow
 – venous outflow
 – and the adequacy of the venous system to support an autogenous or prosthetic access in the extremity.
 – Venous component performed with and without tourniquet in place

Ultrasonography

• Venous component:
 – Duplex Cephalic vein from wrist to shoulder
 – Duplex Basilic vein from its origin to its confluence with the brachial vein near the axilla.
 – Document:
 • diameter
 • patency
 • Continuity
 • any anatomic anomalies and evidence of phlebosclerosis.
 – The vessel course should be mapped and marked

Ultrasonography

• Arterial Component
 – Obtain bilateral brachial pressures and brachial volumes
 – Duplex brachial artery, radial and ulnar artery documenting any evidence of atherosclerosis, calcification as well as abnormalities or anomalies, i.e. high bifurcation of the brachial, and any stenosis
Vessel Selection

- Artery selection:
 - RadioCephalic AVFs created with radial arteries, with a diameter >1.5 mm vs <1.5 mm. Immediate patency rate in the >1.5 mm group was 92 % vs 45% in the <1.5 mm group.
 - Patency rates after 12 weeks were 83% vs 36%, respectively.
 - Based on this 2mm artery is the commonly accepted limit for adults

Vessel Selection

- Vein selection:
 - Cephalic vein at the wrist >2mm -2.6mm
 - Cephalic vein at the upper arm >3mm
 - Increased diameter of the cephalic vein with tourniquet application is a predictor of successful maturation of AVF
 - Evaluation and assessment of Basilic vein as well to determine size, course and patency

Surgical Selection

- Evaluation of the non invasive data will help one determine the plan for the patient.
 - Inadequate cephalic veins often results in planning for basilic vein transpositions, either one stage or two stage

Summary

- History focused on risk factors for AVF failure and risk factors for central venous stenosis
- Physical exam focused on adequacy of arterial inflow and venous outflow
- Ultrasound identifying arterial diameter >1.5mm and venous diameter >2mm with good distensibility.
 - These help to maximize successful primary function of hemodialysis access

Thank you