Congenital Vascular Disorders

Cynthia K. Shortell, MD

Disclosures

• I have no relationships to disclose

• I will be discussing off label or unapproved uses of drugs or devices in my presentation.

Outline

• Cystic Adventitial Disease
• Popliteal Artery Entrapment Syndrome
• Vascular Malformations

Cystic Adventitial Disease

• Rare (< 0.1% population)
• 1st described 1947 by Atkins and Key
 - 40 yo M w/ thigh claudication
 - "myxomatous tissue arising from the posterior aspect of the external iliac artery"
• May involve any artery or vein, but popliteal artery most common (85%)

Cystic Adventitial Disease

Etiology: Theories

• Embryologic synovial or ganglial cells trapped in artery
 - Histology of CAD lesions resemble ganglia and synovial cells...
• Repeated stress from knee joint causes microtrauma and degeneration of arterial wall with separation of components

Cystic Adventitial Disease

Clinical Presentation:
- Healthy, non-smoking middle aged men
- Rapid onset of *unilateral* claudication
- Loss of distal pulse with knee flexion

Diagnosis:
- Abnormal ABI (resting and exercise)
- Duplex, stenosis + cystic lesion
- MRI
- Catheter based arteriography

Arteriography

- Scimitar sign
- Concentric lesion
- Hourglass sign
- Eccentric lesion

Magnetic Resonance Imaging

Sequential axial T-2 weighted images

Severe compression of popliteal artery

Treatment

- Few studies to guide therapy
- Aspiration (u/s, CT guidance)
 - Minimally invasive
 - Extremely high recurrence rate
- Angioplasty
 - Cyst rupture, thrombosis, embolization
- Surgical repair
 - Bypass and excision of lesion
 - Cyst evacuation (high recurrence rate)

Outline

- Cystic Adventitial Disease
- Popliteal Artery Entrapment Syndrome
- Vascular Malformations

Popliteal Artery Entrapment

- Rare congenital disorder
- Abnormal relationship of the PA to the muscles in the popliteal fossa
- Usually medial head of the gastrocnemius muscle
- Less commonly fibrous bands or anomalies of the popliteus muscle

References

Popliteal Artery Entrapment

- Estimated prevalence
 - 0.165% 1
 - 15:1 male predilection 3
- Bilateral in 22% to 67% of cases 4
- No genetic predilection

- Normal Anatomy:
 - SFA becomes PA after passing *adductor hiatus*

- Pathophysiology:
 - Abnormal embryologic development
 - Numerous possible anomalous relationships responsible for PAES
 - Proximity of the popliteal artery to the gastrocnemius creates susceptibility to compression

- Classification:
 - Based on anatomic variations there are SIX types of PAES:
 - Type I: Popliteal artery running medial to the medial head of gastrocnemius
 - Type II: Accessory slip of gastrocnemius
 - Type III: Apex of popliteal artery lying below popliteal muscle
 - Type IV: Proximal venous entrapment
 - Type V: Functional entrapment

Levien, Veler, JVS 30 (4): 587-98, 1999
Popliteal Artery Entrapment

- **Type II**
 - Medial head of gastrocnemius inserts *abnormally in a lateral position*
 - Popliteal artery descends normally but trapped medial to and beneath the muscle

Levien, Veller, JVS 30 (4); 587-98, 1999

Popliteal Artery Entrapment

- **Type III**
 - The popliteal artery is compressed by an *abnormal slip* of gastrocnemius muscle

Popliteal Artery Entrapment

- **Type IV**
 - Popliteal artery is entrapped by a *fibrous band* or by the *popliteus muscle*

Levien, Veller, JVS 30 (4); 587-98, 1999

Popliteal Artery Entrapment

- **Type V**
 - Any of the four anatomic variations that include the *popliteal vein*

Popliteal Artery Entrapment

- **Type VI**
 - “Functional” PAES
 - In patients with *normal* mm attachments, where compression of the popliteal artery caused by *hypertrophic soleus muscle with extensive attachments of the soleus* to the fibula and tibia
 - Functional PAES is usually seen in young, healthy athletes
 - Provocative maneuvers must be done *against resistance*, unlike other PAES

Turnipseed et al, JVS 49(5), 1189-95, 2009
Popliteal Artery Entrapment

- **Diagnosis:**
 - Early Stages:
 - nl pulses/signals that disappear or decrease w/active plantar flexion or passive dorsiflexion of the foot (NB need to resist patient w/Type VI)
 - Later Stages:
 - pulses/ABIs may be reduced at rest d/t fixed stenosis or occlusion

 Levien, Veller, JVS 30 (4); 587-98, 1999

- **Imaging: Duplex**
 - Duplex in neutral position: normal triphasic waveform in popliteal artery

- **Imaging: Angiography**
 - In neutral position artery normal
 - The "classic" medial deviation of the PA is only seen in Type I, and is therefore not required for the dx

- **Imaging:**
 - Anatomy of muscular structures cannot be detected on US or conventional angiography
 - In addition, there may be a significant number of patients with false positive findings on arteriogram with provocative maneuvers

 Therefore, MRI must be performed to demonstrate the underlying abnormal anatomic relationships in patients suspected of having PAES

17 year old female with bilateral PAES
Popliteal Artery Entrapment

- **Imaging:**
 - MRI and MR Angiography demonstrate:
 - The vessel lumen
 - Presence/absence of anomalous anatomy and precise definition of muscular insertions for pre-operative planning

- **Imaging:**
 - abnormal slip of muscle from lateral head of the gastrocnemius muscle passing anterior to the popliteal artery

- **Imaging:**
 - MRA in neutral position shows normal arterial flow

- **Pathophysiology:**
 - Untreated PAES universally progresses to stenosis and occlusion of the popliteal artery due to repeated microtrauma to the vessel
 - Post-stenotic dilatation may also be seen

- **Treatment:**
 - Early stages/no arterial injury: Surgical release of the muscle or tendon is the definitive treatment
 - Late stages/stenosis: Patch angioplasty with SSV
 - Late stages/occlusion: GSV interposition graft
 - Functional PAES: Resection of the soleal attachments to fibula and tibia is performed to “release” the artery

Popliteal Artery Entrapment

• Operative Treatment:
 – Posterior approach (early):
 • Muscle release only
 • Preferable for stenoses or short occlusions (early stage):
 – Allows muscle release
 – Access to SSV for interposition grafting or patch

Popliteal Artery Entrapment

• Operative Treatment:
 – Medial approach (mid/late):
 • Option for moderate lesions requiring both bypass and muscle release
 • Required for long segment occlusion into the tibial (late stage)
 – Expose GSV, inflow and outflow vessels
 – Muscle/tendon release not helpful as vessel is already occluded

PAES vs. CAD

<table>
<thead>
<tr>
<th></th>
<th>Popliteal Entrapment</th>
<th>Cystic Adventitial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Teens - 20s</td>
<td>30s-40s</td>
</tr>
<tr>
<td>Physical exam/pulse obliteration</td>
<td>Active plantar flexion, dorsiflexion</td>
<td>Knee flexion</td>
</tr>
<tr>
<td>Treat</td>
<td>Always</td>
<td>If symptoms/severe</td>
</tr>
</tbody>
</table>

Outline

• Cystic Adventitial Disease
• Popliteal Artery Entrapment Syndrome
• Vascular Malformations

Vascular Malformations

• Definition
 – Embryologically developed, inborn errors of vascular morphogenesis leading to true structural anomalies

• Etiology:
 – Unknown, but genetic predilection
 • Spectrum of disorders ranging from minimal to fatal
 • Overall Incidence = 1.2-1.5%
Vascular Malformations

Archaic Terminology:
- hemangioma
- cavernous hemangioma
- birthmarks (naevi)
- port-wine stains
- cystic hygroma

Vascular Malformations

- **Hemangiomas** are true neoplastic disorders and pathohistologically they demonstrate increased endothelial cell turnover rate
- **Vascular malformations** arise by dysmorphogenesis without increased endothelial proliferation

Hemangioma

Classification

- **Vascular Anomalies**
 - Tumors
 - Malformations
 - High Flow (AVM)
 - Low Flow
 - Venous
 - Lymphatic
 - Combined

Hemangioma

- **Hemangioma:**
 - Proliferative phase during the first year of life
 - Spontaneous involution
 - Treatment often not needed
 - Therapy: usually medical (corticosteroids, propranolol)

Vascular Malformations: Diagnosis

- Determine extent of lesion
- Key decision point is high flow v low flow
- Treatment
 - High vs low: use of low flow tx in high flow lesions catastrophic
 - Focal vs extensive/invasive
- MRI: mainstay of Dx
 - Involvement of muscle, nerve, bone, etc
 - Can differentiate high vs low in 90% pts

 Litsky, Shortell, personal communication

Slow Flow Vascular Malformations

- Capillary Malformation (CM)
- Venous Malformations
 - Simple venous malformations
 - Blue rubber bleb nevus syndrome
- Lymphatic Malformations
- Combined
 - Klippel-Trenaunay syndrome
 - Proteus syndrome
 - Maffucci syndrome

 As a group, Low Flow Malformations are less aggressive than High Flow Malformations, and grow with the patient (not progressive)

Venous Malformations

- Pain, swelling
- Varicosities or bluish skin discoloration
- Soft and easily compressible lesions
- Drain with elevation
- Bleeding and/or thrombosis
- May be trivial or extensive
- Osteomuscular hypertrophy

Low Flow Vascular Malformations

- Klippel-Trenaunay Syndrome Triad:
 - Capillary malformations ("port wine stain")
 - Venous/lymphatic lesion
 - Osteomuscular hypertrophy

Low Flow Malformations: Diagnosis

- Aplasia or hypoplasia of deep venous trunks
 - Present in 8% of VM patients (with venous predominance)

 Prevalence of deep venous anomalies is even higher in patients with KTS

Low Flow Malformations: Treatment

- **Sclerotherapy:**
 - **Liquid**
 - Ethanol
 - Fluoroscopic guidance
 - **Foam**
 - Polidocanol (Asclera®)
 - Sodium Tetradecyl Sulfate (Sotradecol®)
 - U/S or visual guidance

Ethanol sclerotherapy adverse effects:
- EtOH toxicity
- Severe pain
- Ulceration and necrosis at injection site
- Ischemic bullae
- DVT and PE
- Peripheral nerve injury
- Pulmonary hypertension

Low Flow Malformations: Treatment

- **Foam sclerotherapy**
 - Fewer side effects, no need for GA
 - Sodium Tetradecyl Sulfate (USA)
 - Used widely in US and Europe in the treatment of varicose veins and superficial reflux
 - Not previously applied to the treatment of VMs
 - Polidocanol (Europe)
 - has shown benefit in the treatment of VM
 - Now FDA approved in US

High Flow Malformations: Diagnosis

Duplex:
Multi directional flow and high-amplitude arterial waveform with spectral broadening
High Flow Malformations: Diagnosis

- **MRI**
 Best to evaluate extent of AVM and relationship to adjacent structures

Arteriogram

- If treatment planned
- Allows precise evaluation of feeding arteries and draining veins-feasibility of embolization

High Flow Malformations: Treatment

Coil embolization

Glue embolization

9/12/2011
• The most common congenital vascular disorders are Cystic Adventitial Disease, Popliteal Artery Entrapment Syndrome, and Vascular Malformations

• PAES and CAD may be confused but can be distinguished by History, PEx and imaging

• Vascular Malformations are non-proliferative disorders that require multi-disciplinary care