Preoperative Frailty Risk Analysis Index to Stratify Patients Undergoing Carotid Endarterectomy

Melin, Alyson A.\(^{1,2}\); Schmid, Kendra K.\(^2\); Lynch, Thomas G.\(^1\); Kappes, Steven\(^3\); Pipinos, Iraklis I.\(^{1,2}\); Longo, G. Matthew \(^{1,2}\); Gupta, Prateek K.\(^4\); Johanning, Jason M.\(^{1,2}\)

1. NWI VA Medical Center, Omaha, NE, United States.
2. University of Nebraska Medical Center, Omaha, NE, United States.
3. Aurora Healthcare System, Milwaukee, WI, United States.
4. University of Wisconsin, Madison, WI, United States.
Introduction

• No disclosures
Medicare wasted at least $1.9 billion a year on unnecessary treatments, study finds
Original Investigation | LESS IS MORE

Measuring Low-Value Care in Medicare

Aaron L. Schwartz, BA; Bruce E. Landon, MD, MBA; Adam G. Elshaug, PhD, MPH; Michael E. Chernew, PhD; J. Michael McWilliams, MD, PhD

<table>
<thead>
<tr>
<th>Measure</th>
<th>Source and Supporting Literature</th>
<th>More Sensitive, Less Specific (Base Definition)</th>
<th>Operational Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular Testing and Procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress testing for stable coronary disease</td>
<td>CW(^3)^, literature(^3)(^5)</td>
<td>Stress testing for patients with an established diagnosis of ischemic heart disease or angina (≥6 mo before the stress test) and thus not done for screening purposes</td>
<td>Test not associated with inpatient or emergency care, which might be indicative of unstable angina(^6); only patients with a past diagnosis of myocardial infarction to exclude patients with a history of noncardiac chest pain inaccurately coded as angina (ie, those with no underlying ischemic heart disease who might benefit from screening and optimization of medical management)</td>
</tr>
<tr>
<td>Percutaneous coronary intervention with balloon angioplasty or stent placement for stable coronary disease</td>
<td>Literature(^3)^(^5),(^3)^(^6)</td>
<td>Coronary stent placement or balloon angioplasty for patients with an established diagnosis of ischemic heart disease or angina (≥6 mo before the procedure); procedure not associated with an ED visit,(^8) which might be indicative of acute coronary syndrome</td>
<td>Only patients with a past diagnosis of myocardial infarction to exclude patients with a history of noncardiac chest pain inaccurately coded as angina</td>
</tr>
<tr>
<td>Renal artery angioplasty or stenting</td>
<td>Literature(^3)^(^7),(^3)^(^8)</td>
<td>Renal/visceral angioplasty or stent placement</td>
<td>Diagnosis of renal atherosclerosis or renovascular hypertension noted in procedure claim</td>
</tr>
<tr>
<td>Carotid endarterectomy in asymptomatic patients</td>
<td>CW(^3)^(^3),(^3)^(^9)</td>
<td>Carotid endarterectomy for patients without a history of stroke or TIA and without stroke, TIA, or focal neurological symptoms noted in claim</td>
<td>Operation not associated with an ED visit(^5); only female patients(^1)</td>
</tr>
<tr>
<td>IVC filters to prevent pulmonary embolism</td>
<td>Literature(^4)^(^0),(^4)^(^1)</td>
<td>Any IVC filter placement</td>
<td>No additional restrictions</td>
</tr>
</tbody>
</table>
Introduction

• Carotid endarterectomy is under increased scrutiny
• The value of carotid endarterectomy is dependent on outcomes
• How can we improve outcomes in carotid endarterectomy?
 – Technical
 – Patient Selection
Introduction

• How do we best select patients to undergo carotid endarterectomy?

• Frailty is a syndrome with decreased physiologic reserves arising from cumulative comorbid conditions. ¹, ²

Frailty as a Predictor of Surgical Outcomes in Older Patients

Martin A Makary, MD, MPH, FACS, Dorry L Segev, MD, PhD, FACS, Peter J Pronovost, MD, PhD, Dora Syin, MD, Karen Bandeen-Roche, PhD, Purvi Patel, MD, MPH, Ryan Takenaga, MD, Lara Devgan, MD, MPH, Christine G Holzmueller, BLA, Jing Tian, MS, Linda P Fried, MD, MPH

The unadjusted incidence of complications after minor procedures was 3.9% in nonfrail, 7.3% in intermediately frail, and 11.4% in frail patients; after major procedures, the unadjusted incidence was 19.5% in nonfrail, 33.7% in intermediately frail, and 43.5% in frail patients.
RISK ANALYSIS INDEX (RAI)

1. **Age**
 - Score with Cancer:
 - Score without Cancer:

2. **Sex**
 - Female = 0/ Male = 5

1. **Renal Insufficiency**
 - No = 0/ Yes = 6

2. **Congestive Heart Failure**
 - No = 0/ Yes = 4

3. **Shortness of Breath at Rest**
 - No = 0/ Yes = 8

4. **Weight Loss (>10 lbs) in last 3 Months**
 - No = 0/ Yes = 5

5. **Poor Appetite**
 - No = 0/ Yes = 4

6. **Residence Other than Independent Living**
 - No = 0/ Yes = 8

7. **Cognitive Decline in last 3 Months**
 - No / Yes

1. **Activities of Daily Living**
 - With Cognitive Decline:
 - Without Cognitive Decline:

TOTAL SCORE: 25 (0-85)

Study Design

• All patients in NSQIP database who underwent CEA from 2005 – 2011 (n = 44,832)
• A quality and frailty team matched variables from RAI to preoperative NSQIP parameters
• Primary outcome measures: Stroke, MI, Death, Length of Stay
RAI Score Breakdown

All Patients

Symptomatic Patients

Asymptomatic Patients

92%

88%

94%
All Patients

* p = Cochran-Armitage Trend Test
Symptomatic Patients

- Stroke ($p = 0.009$)
- Death ($p < 0.0001$)
- MI (0.002)

* $p = $ Cochran-Armitage Trend Test
Asymptomatic Patients

Stroke (p = 0.22)
Death (p < 0.0001)
MI (p = 0.04)

*p = Cochran-Armitage Trend Test
Length of Stay

- All Patients
- Symptomatic Patients
- Asymptomatic Patients
RISK ANALYSIS INDEX (RAI)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Score with Cancer</th>
<th>Score without Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Age</td>
<td>75</td>
<td>(13-20)</td>
</tr>
<tr>
<td>2.</td>
<td>Sex</td>
<td>Female = 0/ Male = 5</td>
<td>5 (5)</td>
</tr>
<tr>
<td>1.</td>
<td>Renal Insufficiency</td>
<td>No = 0/ Yes = 6</td>
<td>6 (6)</td>
</tr>
<tr>
<td>2.</td>
<td>Congestive Heart Failure</td>
<td>No = 0/ Yes = 4</td>
<td>0 (4)</td>
</tr>
<tr>
<td>3.</td>
<td>Shortness of Breath at Rest</td>
<td>No = 0/ Yes = 8</td>
<td>0 (8)</td>
</tr>
<tr>
<td>4.</td>
<td>Weight Loss (>10 lbs) in last 3 Months</td>
<td>No = 0/ Yes = 5</td>
<td>0 (5)</td>
</tr>
<tr>
<td>5.</td>
<td>Poor Appetite</td>
<td>No = 0/ Yes = 4</td>
<td>0 (4)</td>
</tr>
<tr>
<td>6.</td>
<td>Residence Other than Independent Living</td>
<td>No = 0/ Yes = 8</td>
<td>8 (8)</td>
</tr>
<tr>
<td>7.</td>
<td>Cognitive Decline in last 3 Months</td>
<td>No / Yes</td>
<td></td>
</tr>
</tbody>
</table>

1. Activities of Daily Living
 - With Cognitive Decline: _____(-2-21)
 - Without Cognitive Decline: ____2 (0-16)

TOTAL SCORE 25 (0-85)
Administer RAI in Clinic

Low RAI Score
- Excellent Outcomes
- Surgical Techniques
- Hospital Practices

Poor Outcomes

High RAI Score
- Further Workup
- Comprehensive Geriatric Assessment
- Alternative Treatment
- Appropriate Patient Counseling

Thank you. Questions?