Open Surgical Techniques for Renal Artery Revascularization

Matthew S. Edwards MD
Department of Vascular and Endovascular Surgery
Wake Forest University Baptist Medical Center
Disclosures for Matthew Edwards

No Commercial Interests or Conflicts to Disclose
Surgical Renal Artery Revascularization

- Employed to treat a number of conditions
 - Renovascular occlusive disease
 - Renovascular Hypertension
 - Ischemic Nephropathy
 - Renal Artery Aneurysms
 - Congenital Renal Artery Lesions
Surgical Renal Artery Revascularization

- Renovascular Occlusive Disease
 - Atherosclerotic in the majority of cases
 - Disease predominantly ostial
 - FMD most common non-atherosclerotic cause

- Use of open surgical techniques has declined tremendously over past 20 years
Surgical Renal Artery Revascularization

- Renovascular Occlusive Disease
- Open techniques still useful for
 - Variant anatomy
 - Multiple renal arteries
 - Renal arteries with early branchpoints
 - Cases requiring concomitant open surgical management of aortic pathology
 - Recurrent stenosis after endovascular treatment
 - Cases requiring branch level treatment
 - Usually FMD and/or aneurysm cases
Surgical Renal Artery Revascularization

• Variant Anatomy
 • Multiple Arteries
 • Usually small
 • Technical problems for bypass
 • Early Branchpoints
 • Recurrent stenosis

• Aortic pathology
 • Adjacent aneurysm
 • Coral reef atheroma
 • Occlusive disease
Surgical Renal Artery Revascularization

• Renal Artery Aneurysms
 • Frequently associated with FMD
 • Most frequent site of involvement is primary bifurcation

• Congenital Lesions
 • Most frequently encountered in children and young adults
 • Multitude of anatomic conditions
Surgical Renal Artery Revascularization

• Techniques for Repair
 • Renal Artery Bypass
 • Aortorenal
 • Extra-anatomic
 • Branch Level Bypass/Replacement
 • Transaortic Renal Endarterectomy
 • Combined Aortic and Renal Replacement
Surgical Renal Artery Revascularization

- Aortorenal Bypass
 - Midline or transverse incisions can be used
- Complete mobilization of left renal vein
 - Division of adrenal, gonadal, and lumbar branches
- Conduit choices
 - Vein
 - Prosthetic
 - Hypogastric artery*
Surgical Renal Artery Revascularization

• Aortorenal Bypass
 • Proximal Anastomosis
 • Mannitol and heparin
 • Infrarenal control
 • Use aortic punch
 • Greater geometric freedom with lower site of origin
 • Distal Anastomosis
 • Minimally traumatic clamps
 • Can be end-to-side or end-to-end
Surgical Renal Artery Revascularization

• Extra-anatomic bypass
 • Can use iliac, common hepatic and splenic arteries as inflow
• Modifications of exposure but other principles remain the same
• Most frequently use vein for splanchno-renal
 • Can use a transposition of splenic artery
• Most frequently use prosthetic conduit for iliorenal
Surgical Renal Artery Revascularization

• Branch level bypass/replacement
 • Usually perform one side at a time
 • Subcostal incisions preferred
 • Visceral mobilization with kidney left in place but completely exposed
 • Loop ureter to control collateral blood flow
 • Topical cooling and cold perfusion of organ preservation solution
 • Saphenous vein preferred conduit*
 • Geometric planning of bypass course critical
Surgical Renal Artery Revascularization

- Trans-aortic Renal Endarterectomy
- Midline or transverse incisions can be used
- Transperitoneal or left medial visceral mobilization
- Complete mobilization of the left renal vein
- Exposure of SMA and celiac
 - Careful division of diaphragmatic and neural tissue for clamp placement and aortotomy
- Supraceliac or supra-SMA clamp placement
Surgical Renal Artery Revascularization

- Transaortic Renal Endarterectomy
 - Longitudinal aortotomy from just below SMA to below renals
 - Can do with transverse aortotomy
 - Infrarenal
 - Transrenal
 - Careful attention to last adherent point of plaque
Surgical Renal Artery Revascularization

• Intraoperative completion duplex in all cases
• Use high frequency ‘footprint’ probe in a sterile sleeve with direct application to artery
 • Greater reliance on US images
 • Duplex parameters altered by ischemia
 • Increased resistance
 • Decreased diastolic flow
• Revision required in ~7% of bypasses*

*Cherr et al, J Vasc Surg 2002
Surgical Renal Artery Revascularization

• Outcomes
 • Durability and patency excellent for all*
 • Aortorenal bypass: >95% patency at 5 years
 • Iliorenal bypass: ~95% patency at 5 years
 • Splanchnorenal bypass: ~95% patency at 5 years
 • Endarterectomy: ~95% patency long-term
 • Branch reconstructions: ~90% patency at 5 years
 • Functional outcomes depend upon indication
